Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Thorax ; 77(Suppl 1):A30, 2022.
Article in English | ProQuest Central | ID: covidwho-2118454

ABSTRACT

S44 Table 1Summary of significant medical events, thoracic computed tomography (CT) and pulmonary function tests (PFTs) in ORBCEL-C and placebo groups at 1 year follow upORBCEL-C Placebo Number of patients followed up 20 21 Significant medical events Number of patients with SMEs 6/20 9/21 Total SME events 7 11 Classification Respiratory,thoracic and mediastinal disorders 4 6 Neoplasm - benign, malignant, unspecified 1 0 Infections and infestations 1 1 Cardiac disorders 1 0 Metabolism and nutrition disorders 0 1 Injury, poisoning and procedural complications 0 1 Renal and urinary disorders 0 1 Gastrointestinal disorders 0 1 Thoracic CT Number of CTs available 5 8 Time to CT (Median, IQR) 181 (157–198) 203 (95–233) Evidence of ILD on CT 4 6 PFTs Number of PFTs available 10 8 Time to PFTs (Median, IQR) 184.5 (117.5–292.75) 203.5 (118.25–242.5) FEV1 (Mean, SD) 84.9 (13.6) 80.5 (13.3) FEV1 <80% predicted (n,%) 4/10 (44%) 4/8 (50%) FVC (Mean, SD) 78.4 (13.2) 79.3 (16.5) FVC <80% predicted (n,%) 5/10 (55%) 5/8 (62.5%) FEV1/FVC ratio (Mean, SD, n) 0.88 (0.12) N=8 0.76 (0.05) N=5 FEV1/FVC <0.7 (n,%) 0 (0%) 0 (0%) TLCO (Mean, SD, n) 78.9 (14.8) N=9 61.9 (13.4) N=7 TLCO <80% (n,%) 6/9 (66.7%) 7/7 (100%) ConclusionsOne year follow up supports the safety of ORBCEL-C MSCs in patients with moderate to severe ARDS due to COVID-19. A similar incidence of pulmonary dysfunction is reported in both groups at long term follow up.Please refer to page A?? for declarations of interest related to this .

2.
Intensive Care Med ; 48(11): 1525-1538, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2027451

ABSTRACT

PURPOSE: Benefit from convalescent plasma therapy for coronavirus disease 2019 (COVID-19) has been inconsistent in randomized clinical trials (RCTs) involving critically ill patients. As COVID-19 patients are immunologically heterogeneous, we hypothesized that immunologically similar COVID-19 subphenotypes may differ in their treatment responses to convalescent plasma and explain inconsistent findings between RCTs . METHODS: We tested this hypothesis in a substudy involving 1239 patients, by measuring 26 biomarkers (cytokines, chemokines, endothelial biomarkers) within the randomized, embedded, multifactorial, adaptive platform trial for community-acquired pneumonia (REMAP-CAP) that assigned 2097 critically ill COVID-19 patients to either high-titer convalescent plasma or usual care. Primary outcome was organ support free days at 21 days (OSFD-21) . RESULTS: Unsupervised analyses identified three subphenotypes/endotypes. In contrast to the more homogeneous subphenotype-2 (N = 128 patients, 10.3%; with elevated type i and type ii effector immune responses) and subphenotype-3 (N = 241, 19.5%; with exaggerated inflammation), the subphenotype-1 had variable biomarker patterns (N = 870 patients, 70.2%). Subphenotypes-2, and -3 had worse outcomes, and subphenotype-1 had better outcomes with convalescent plasma therapy compared with usual care (median (IQR). OSFD-21 in convalescent plasma vs usual care was 0 (- 1, 21) vs 10 (- 1, to 21) in subphenotype-2; 1.5 (- 1, 21) vs 12 (- 1, to 21) in suphenotype-3, and 0 (- 1, 21) vs 0 (- 1, to 21) in subphenotype-1 (test for between-subphenotype differences in treatment effects p = 0.008). CONCLUSIONS: We reported three COVID-19 subphenotypes, among critically ill adults, with differential treatment effects to ABO-compatible convalescent plasma therapy. Differences in subphenotype prevalence between RCT populations probably explain inconsistent results with COVID-19 immunotherapies.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/therapy , Critical Illness/therapy , Biomarkers , Cytokines , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL